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Ultra-Wideband Featuring Enhanced Delay and Sum Algorithm and
Oriented for Detecting Early Stage Breast Cancer
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Abstract—In this study, we present the experimental results of ultra-wideband (UWB) imaging
oriented for detecting small malignant breast tumors at an early stage. The technique is based on
radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease
and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the
enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a
cluttered environment and noisy data. The methods and procedures are tested using MRI-derived
breast phantoms, and the results are compared with images obtained from classical DAS variant.
Incorporating a new filtering technique and multiplication procedure, the proposed algorithm is effective
in reducing the clutter and producing better images. Overall, the methods and procedures registered
a signal-to-clutter ratio (SCR) value of 1.54 dB when imaging the most challenging example involving
the heterogeneously dense model in 8-antenna geometry. The SCR is slightly increased to 3.12 dB when
the number of sensors is increased to 16.

1. INTRODUCTION

The past decade has seen the emergence of new but innovative imaging technique based on radar
sensing applicable to medical application, particularly in breast cancer diagnosis [1], as well as to civil
engineering structures [2, 3]. Consequently, several researches have focused on radar imaging because
it allows image reconstruction to be executed in a single step rather than formerly solving the inverse
problem. Resolving the inverse problems can be difficult particularly in cases of noisy or incomplete
dataset. There are various reasons for the incomplete dataset. Prominent among them is the use of
limited number of sensors due to space restriction of the area under investigation or the presence of
obstacles on its surface. Moreover, the problem is often ill-posed, in which small errors in the data can
lead to large errors in the solution. This is especially true with breast sensing because of the cluttering
generated by the heterogeneity of the healthy tissue surrounding the cancerous cells, which causes
multi-scattering effects. Therefore, the iterative nonlinear solvers often result in divergence of otherwise
convergent algorithm [4]. In contrast, the convergence of the radar-based algorithm is always guaranteed,
since the inversion is based on direct approach instead of matrix minimization. However, the image that
it produces is qualitative instead of quantitative as in the iterative approach. This trade-off is acceptable
in certain specialized applications like the breast mapping in which detection is sufficiently adequate for
early diagnosis. The strategy of radar-based image reconstruction technique relies on dielectric contrast
between malignant and normal tissues [5]. UWB radar based techniques aim to identify the presence
and location of significant scattered energy arising from the dielectric variation. These techniques, do
not solve the inverse problem, and therefore, are less demanding computationally. An example of radar-
type approach is the delay and sum (DAS) algorithm, which was first proposed by Hagness in 1998 [1, 6].
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In literature, this technique is also referred to as confocal microwave imaging (CMI). Generally, CMI
focuses only on significant scatterings instead of quantitatively calculating the dielectric properties of the
entire breast. Solving this problem generally requires time alignment of the coherently mapped arrival
pulses and filtering a strong artifact and noise to improve image qualities. Nevertheless, the original
version of this algorithm offers limited capability in terms of clutter suppression and artifacts [7]. As
stated by these authors, the CMI is very effective in filtering simple type of artifacts like reflections at
skin-breast interface and antenna coupling. This is because this technique employs relatively simple
filtering technique based on time shifting and signal addition. A more advanced approach is needed in
order to deal with other types of artifacts especially the clutter generated by the complex in-homogeneity
of breast tissues. Recent research on microwave image reconstruction for CMI method has evolved into
two tracks: data-dependent [8] and data-independent methods [9]. Multi-static adaptive microwave
imaging (MAMI) [10] is a data-dependent method that utilizes a robust Capon beamformer (RCB) [11]
to correct errors in the steering vector resulting from dispersive propagation effects. Although the
results are quite promising, the accuracy of this algorithm relies strongly on an accurate estimation
of the steering vector, whose computational complexity increases as the heterogeneity of the media
increases. Meanwhile, the data-independent reconstruction methods do not depend on steering vector
information and are mainly based on the standard DAS beam-forming technique [1, 6]. The method
uses simple time-shifting and adding (synthetic focusing) of backscattered energy to reconstruct the
image. As a result, this method is less computationally intensive. Based on the assumption that breast
tissue is principally homogeneous, researchers have incorporated numerous advances to DAS resulting
in the development of several variants [12–17]. However, the original DAS including its variants has one
principal drawback that it assumes that there is a significant contrast between cancerous and normal
breast tissues. Theoretically, this assumption is valid for certain types of breast, namely the fatty
breast in which the homogeneous tissue constitutes more than 80% of the breast composition [18]. For
other types of breast, particularly the heterogeneous dense breast that is composed of scattered fibro-
glandular structure in addition to fatty tissue, this assumption does not hold since the dielectric contrast
between healthy and cancerous cells can be as low as 1 : 1.7 [19]. Therefore, a direct application of these
techniques would result in noisy reconstruction. Furthermore, the reduction of the permittivity contrast
can lead to both glandular and cancerous tissues appearing as high pixel energy in the tomogram, hence,
raising the possibility of a false-positive diagnosis [18]. This depicts a more complex imaging scenario
and instigates the development of improved signal processing techniques for UWB sensing.

In an effort to further improve the capability and capacity of the DAS algorithm, especially for the
accurate detection of early stage malignant tumor in human breast, an enhanced version of the delay and
sum (EDAS) algorithm, featuring multi-static measurement geometry, has been developed and tested in
our laboratory. The preliminary results obtained from simulations and laboratory experiments suggest
that the proposed algorithm is effective in reducing the clutters and improving the image-to-signal
ratio. In this paper, the performance and accuracy of this algorithm is further evaluated in the most
challenging scenario using the densely heterogeneous breast models. The results are compared with
conventional beam forming algorithm, from which the conclusions are derived.

2. IMAGE RECONSTRUCTION

The UWB radar imaging technique aims to reconstruct the presence and location of the scattered
signature arising from the dielectric contrast between malignant and surrounded breast tissues.
Therefore, the qualitative image is displayed as a variance of energy intensity. For a UWB radar,
a transmitting antenna sends a very short-duration pulse of microwave energy, which penetrates
into the region under test and becomes scattered by any target that exhibits variation contrast in
dielectric properties. The receiving antennas record these scattered signals from which the target non-
homogeneities are reconstructed.

2.1. The Delay and Sum (DAS)

The DAS monostatic approach was developed by Nilavalan et al., to multistatic measurements [12].
In this technique, the object is illuminated sequentially from a number of sensor locations. For each
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transmitter, the signals arriving at other sensors are sequentially recorded. Thus, gathering more
information from the imaging scene. The distance from each transmitting sensor position to point of
interest r and back to the receiving sensor position is calculated. The calculation is based on the speed
of propagation, and the results are converted into time delays. Then, the recorded signals are time
shifted, summed to calculate the energy at each point of interest.

The energy value of the synthetic focal point r is obtained through the integration of contributions
over a time window w:

En (r) =
∫ w

0

[
M∑

m=1

N∑
n=1

xm,n(t − τm,n(r))

]2

dt (1)

where xm,n is the back scaterred signal recorded from the nth receiver when the mth antenna is
transmitting, τm,n the time delay, and t the time. The propagation delay time is defined as:

τm,n (r) =
‖r − rm‖ + ‖r − rn‖

vΔt
(2)

where ‖r − rm‖ and ‖r − rn‖ are the distances between the focal point r and antennas, and v is the
velocity of propagation.

2.2. The Enhanced Delay and Sum (EDAS)

The proposed EDAS algorithm is similar to DAS algorithm but incorporates a hybrid processing
technique combining (i) the weighted coherence factor (CF ) and (ii) the multiplication procedure.
In doing so, the round-trip traveling time from each antenna to the focal point is first calculated,
generating the backscattered signals with an appropriate time delay. This process is repeated until
all focal points have been scanned, and the time delay corresponding to each focal point and for a
given transmitter-receiver position has been calculated. Second, the backscattered signals from the
tumour are combined and added coherently to produce maximum energy at a given focal point. In the
absence of a tumour, backscattering from breast tissue would add up disjointedly due to the inherent
tissue complexity. In this way, the energy reflected by the tumour is enhanced while the backscattering
resulting from the normal healthy tissues is suppressed. Finally, assembling the intensities at all focal
points would produce an image, depicting the distributions of energy reflected by a scatterer. The aim
of EDAS is primarily to create a pure response signal of the tumor from measured data. Principally
the received information includes backscattered signals from malignant breast tissues and clutter (late
arrivals) in addition to the backscattered from skin-breast interface and the input signal (early arrivals).
Signal processing is used to remove the early arrivals, which dominate the backscattered signals, and
filtering them will lead to improving the signal-to-noise ratio of the tumor response. An averaging
artifact removal procedure [6, 7] is used to remove the skin artifacts. These artifacts are removed using
a calibration process that avoids the use of a breast phantom or a priori information. In doing so,
a reference signal is created by averaging the recording signals Avm,n(t). The reference signal is then
subtracted from each of the original recording backscattered signals km,n(t), resulting in the calibrated
signals xm,n(t), which contain only the tumor response and clutter. Signal averaging is implemented as
follows:

Avm,n (t) =
1
s

M∑
m=1

N∑
n=1

km,n (t) (3)

xm,n (t) = Avm,n (t) − km,n (t) (4)

where M is the total number of transmitting antenna, N the total number of receiving antenna, and
s = M ×N the total number of recorded signals. The round-trip distance from each sensor to the pixel
of interest is calculated as shown in Figure 1. This value is then converted into time samples based on
the wave propagation speed.

The delay time at each sensor (in unit of samples) can be calculated as follows:

τm,n (r) =
‖r − rm‖ + ‖r − rn‖

vΔt
(5)
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Figure 1. Region of interest illustrating distances d1 and d2 respectively from transmitter rm to focal
point r and back to receiver rn [6].

where the speed of propagation is given by:

v =
C√
εr

(6)

and ‖rm − r‖ and ‖rn − r‖ are the distances between the focal point r and mth transmitter and nth
receiver; Δt is the sampling time; c is the velocity of light in vacuum; and εr is the relative permittivity
of the fatty tissue. Following time alignment for each signal recorded at each focal point, a focusing-
quality procedure utilizing the coherence factor (CF ) is implemented. Traditionally, the CF is used for
anomaly correction and side lobe suppression in ultrasound imaging applications [19]. This procedure is
based on the utilization of the coherence quality weighting of the backscattered signals at specific focal
points inside the domain. The same method can be applied to UWB imaging, which could significantly
enhance the image as results from what ultrasonic experiments suggest [17]. In this case, the coherence
factor is defined as the ratio of the energy of the coherent sum to the total incoherent energy [20].
Mathematically, the coherence factor CF (r) is given by:

CF (r) =
coherent energy

total incoherent energy
=

∣∣∣∣∣
M∑

m=1

N∑
n=1

xm,n(t − τm,n(r))

∣∣∣∣∣
2

M∑
m=1

N∑
n=1

|xm,n(t − τm,n(r))|2
(7)

where xm,n(r) is a calibrated signal transmitted for the mth transmitting antenna and nth receiving
antenna; τm,n(r) is the time delay for the mth transmitting antenna at a point r and back to the nth
receiving antenna. The focusing quality FQm,n(r) is obtained by multiplying the coherence factor with
the calibrated signal after time-shifting. Mathematically:

FQm,n (r) = CF (r)xm,n (t − τm,n (r)) (8)

The high-coherence signals (high coherence factor) represent the main lobe part, which creates
an image with good focusing quality, and their amplitude should be maintained. On the other hand,
the incoherent signals (low coherence factor) represent the side lobe part, which creates an image
with poor focusing quality, and their amplitude should be suppressed. Consequently, the amplitude of
each image pixel is adaptively weighted by the corresponding CF such that the unwanted side lobes
are effectively reduced. The enhancement in tumor detection capability of EDAS algorithm is based
on the supplementary weighting process involving paring multiplication of the backscattered signals.
In this case, each signal pair measured from the same transmitter is multiplied with each other and
their products summed. Since this method acquires more information about the targets, extra clutter
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elimination is theoretically possible. The multiplication by pair can be expressed as follows:

ym,n (r) =
M∑

m=1

N−1∑
n=1

FQm,n (r)FQm,n+1 (r) (9)

where ym,n is the output signal after pairing multiplications. Each value of energy is converted into a
pixel, and the assembly of these pixels forms an image indicating the location of scatterers.

This procedure is similar to calculating the energy En(r) at each focal point such that:

En (r) =
∫ w

0

[
M∑

m=1

N∑
n=1

ym,n(r)

]2

dt (10)

and w is the window length relative to the transmitted pulse width.

3. MATERIALS AND METHODS

3.1. Experimental Breast Phantom

The dielectric properties of human tissues at microwave frequencies have been studied in the past where
various tissues have been noted to have varying characteristics relating to their water content and
structure [21]. A typical adult human breast can be classified into one of the three possible categories
depending on the radiographic density. They are (a) fatty, (b) mildly heterogeneous, and (c) densely
heterogeneous breasts. Respectively, they are referred herein to as Type A, Type B, and Type C breasts.
Figure 2 shows T1-weighted magnetic resonance images of the breast types and their corresponding
anatomically derived dielectric properties. Examining Figure 2, the high permittivity values of the
glandular structures for Type B and Type C can be clearly observed, where values reach a close proximity
to those expected for malignant cases.

(a) (b) (c)

Figure 2. T1-MRI (upper) and their corresponding dielectric properties at 5 GHz (lower) of breast
classification showing (a) mostly fatty (< 25% glandular) tissue, (b) scattered fibro-glandular tissue
(25–50% glandular), and (c) heterogeneously dense breast (51–75% glandular) [5, 21].

The reconstruction of cancerous cells of Type A breast proved to be relatively straightforward as
demonstrated by our previous investigations as well as results published by other researchers [22–24].
The challenge is to perform image reconstruction on Type B or Type C breasts due to low contrast
between cancerous and glandular structures. In order to investigate the feasibility of the proposed
technique in imaging these types of breasts, two heterogeneous breast phantoms were constructed using
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mixtures of different chemical materials. These phantoms are similar to some examples reported in
previous studies [25] as all materials are dispersive with frequency-dependent characteristics similar
to those presented in [5, 26]. The chemical materials and formulas used in the construction of the
breast phantom are described [15]. Using these formulas, the phantoms are fabricated composed of
skin layer (εr = 38, σ = 2 S/m), fatty tissue (εr =15, σ = 0.4 S/m), and glandular structure (εr = 32,
σ = 2.5 S/m) at the frequency range of 200 MHz to 5 GHz [17]. The methods and procedures used in
mixing and preparing the chemicals are identical to those reported elsewhere [24]. Figure 3(b) shows the
mildly dense breast model in which the fibro-glandular tissue is simulated by an oval-shape structure
of 35 mm in length and 20 mm in width. In this case, the homogenous background constitutes nearly
75% of the total area while the remaining belongs to the inhomogeneous region. This is in agreement
with the Type B breast as defined by T1-MRI image in Figure 2(b). Meanwhile, Figure 3(c) shows the
heterogeneously dense breast model which comprises two (20 mm radius) circular structures, simulating
the fibro-glandular tissues. Here, the homogeneous background occupies approximately 45% of the
total area compared to 55% inhomogeneous one. This model agrees with the Type C breast defined by
T1-MRI image in Figure 2(c). In both cases, the models are surrounded with 2–3-mm-thick skin tissues
and filled with homogeneously fatty material. Meanwhile, the tumors are made from 5mm-diameter
cylindrical structures, and they are fabricated by mixing the right chemicals, so that the formulas result
in a mixture with permittivity of 54 at 3GHz [20]. As shown in Figures 3(a)–(b), each tumor is placed
in the fibro-glandular structure of each model, simulating cancerous cells at an early stage of the disease.

(a) (b)

Figure 3. Fabrication of heterogeneous human breasts based on realistic T1-MRI images: (a) Type B,
and (b) Type C models.

3.2. Data Acquisition System

The experimental setup showing the important instrumentations and data acquisition system is shown
in Figure 5. Referring to Figure 5(a), the data acquisition system is composed of a Cytec CXM
16 multiplexer, to automatically switch transmitting and receiving lines, connected to an Agilent
E5071C 8.5 GHz VNA for a frequency sweep of (0–5) GHz providing measurements in the time domain.
A wideband 20 dB amplifier is used to improve the received signal power. This acquisition system
communicates with a high-end workstation to automate data acquisition and process the reconstruction
algorithms.

Figure 4(a) demonstrates the schematic diagram for the experimental setup. Meanwhile,
Figure 4(b) shows the actual system including a set of 8 biconical antennas, which are positioned
equidistantly around a phantom forming full view geometry. For each antenna position, the S12 signals
at each of the receiver locations are sequentially recorded in the time domain. A two-port calibration is
performed to minimize insertion losses, impedance mismatch, and electrical delay effects. Figure 5(a)
shows the detailed geometrical construction of the UWB antenna with a cone angle of 45◦ and height
of 10 mm driven via a 50 Ω coaxial feeder, incorporating an in-line ferrite toroid to ensure balanced
antenna feeding, through which the RG54 coaxial cable is threaded. The coaxial central core conductor
is connected to the apex of the lower cone, while the coaxial outer shield conductor is connected to the
upper cone as shown in Figure 5(b). The characteristics of biconical antenna such as S11 is -17 dB, and
radiation pattern is 3.62 GHz–9.63 GHz. In the experiments, the sensors are placed in a 60×60×40-cm-
size glass tank filled with cooking oil up to 35 cm in height, serving also as a coupling medium between
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(a) (b)

Figure 4. The experimental setup for UWB imaging: (a) schematic diagram, (b) actual system.

(a) (b)

Figure 5. (a) Connection of coaxial cable with the biconical antenna; (b) actual antenna connected
with ferrite.

sensors and target. It is found that the liquid similar to oil provides reliable tumor detection and reduces
spatial sampling requirements as compared to other immersion media. The antennas were maintained at
a constant height of approximately 15 cm below the oil surface. Clutters due to reflections, particularly
at the glass-tank and oil-air interfaces, are minimized by appropriate time-gating the arrival pulses.

4. RESULTS AND DISCUSSION

In this study, we present experimental results of ultra-wide band (UWB) imaging comparing qualitative
image reconstruction algorithms. The accuracy and fidelity of EDAS are compared with existing delay
and sum (DAS) algorithm, namely the classical delay and sum (DAS). In this case, the signal-to-clutter
(SCR) ratio has been used to evaluate the performance of the algorithm quantitatively. The SCR is given
by ratio of the maximum tumour backscattered energy to the maximum clutter backscattered energy in
the same image [9]. Figure 6 shows imaging results reconstructed using Type B breast phantom. Image
in Figure 6(b) is reconstructed using DAS. It demonstrates the general capability of the algorithm in
distinguishing between tumor and glandular tissue, resulting in SCR values of 2.21 dB. In this case, the
image appears blurred, and the size and shape of the glandular region are not properly reconstructed.
The result in Figure 6(c) uses the proposed method (EDAS). Clearly this algorithm has resulted in
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(a) (b) (c)

Figure 6. Experimental results of Type B breast phantom with 5mm tumor embedded inside the
glandular region. The actual image is display in (a) while (b) and (c), show reconstructed images using
DAS, and EDAS respectively.

an improved reconstruction, registering 4.51 dB in SCR. In this case, the shape and size of tumor as
well as the glandular structure have been accurately mapped. In spite of a low contrast ratio, these
experiments have proven that the EDAS generally produces a much better reconstruction than DAS
technique. Therefore, this image, together with SCR value, serves as reference to the accuracy and
reliability of the proposed technique in detecting early stage cancerous cells in the heterogeneous setup.

Figure 7(a) shows the actual image of densely breast model. However, the same observations are
not repeated for Type C breast as evident in Figure 7(b)(i). Even though the EDAS algorithm has
managed to detect both the tumor and glandular structures, their sizes as well as locations appear
distorted. In this case, the SCR ratio of only 1.54 dB was achieved for the 8-antenna geometry. The
decrease in the SCR value is partly because the dielectric contrasts between glandular and cancerous
tissues are very low, reaching the limit of UWB detection. Another problem is related to the number of
unique measurements. In this case, the number of unique measurements is 56 for the 8-antenna system.
This corresponds to a spatial resolution to about one-third of the wavelength or approximately equal to
5mm object size. This figure is slightly lower than the Rayleigh criteria of half of wavelength. One way
to overcome this problem is to increase the number of unique measurements by increasing the number of
antennas. Our preliminary investigation reveals that the image resolution and the separation distance
between objects can be improved to λ/12 and λ/16, respectively, if the number of antennas is increased
to 16 [27]. In proving this hypothesis, the phantom in Figure 3(b) was scanned again but using a
16-antenna setup, generating 240 unique or independent measurements. Additionally, the phantom was
rotated approximately by 45◦ in order to evaluate the sensitivity of the system in response to position

(a) (b) (a) (b)

(i) (ii)

Figure 7. Experimental results of densely breast model. (a) Actual image with 5 mm tumor embedded
inside the glandular region, (b) reconstruction image of EDAS, (i) using 8 sensors, (ii) using 16 sensors.
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variation. The result is displayed in Figure 7(b)(ii).
A close examination of this figure reveals that the tumor detection and its location are significantly

enhanced, resulting in improved SCR of 3.12 dB. However, high clutter was still present, causing
difficulty in reconstructing the shape as well the size of the scatterers. This shortcoming is principally
due to the linear nature of radar-based methods in solving the nonlinear inverse scattering problem.
Resultantly, the backscattered energy is very noisy, leading to a reconstruction with a low image-to-
noise ratio. The results, therefore, indicate the limitation of applying this imaging modality for cancer
detection in heterogeneously dense breast.

5. CONCLUSION

In this study, two heterogeneous breast phantoms were experimentally tested to investigate the
performance of UWB imaging in detecting cancerous tumors in dense breast tissue. The laboratory
phantoms were constructed using chemicals whose dielectric properties closely resembled the actual
breast tissues. Experimental results using the MRI-derived breast phantoms indicated that the image
produced by the UWB system was comparable with the results obtained from classical DAS method.
The reconstruction of UWB imaging for densely heterogeneous glandular breast is more difficult due to
the complex distribution of fibro-glandular material, whose dielectric contrast is much smaller than fatty
tissues. As the heterogeneity increases, the SCR ratio decreases, presenting a much more challenging
imaging scenario. Nevertheless, both the glandular region and cancerous cells have been successfully
mapped despite the presence of some artifacts in the image, especially for densely heterogeneous breast.
The UWB system together with EDAS algorithm has been shown to provide better resolution, making it
possible to distinguish between two scatterers. Considering that the UWB system is relatively safe and
cheap, such a system is therefore potentially useful for mass screening or a routine medical examination.
However, more research needs to be performed to improve the image-to-noise ratio, especially for the
densely heterogeneous breast.
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