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Abstract: The green synthesis of metal oxide nanoparticles is an efficient, simple, and chemical-free
method of producing nanoparticles. The present work reports the synthesis of Murraya koenigii-
mediated ZrO2 nanoparticles (ZrO2 NPs) and their applications as a photocatalyst and antibacterial
agent. Capping and stabilization of metal oxide nanoparticles were achieved by using Murraya koenigii
leaf extract. The optical, structural, and morphological valance of the ZrO2 NPs were characterized
using UV-DRS, FTIR, XRD, and FESEM with EDX, TEM, and XPS. An XRD analysis determined that
ZrO2 NPs have a monoclinic structure and a crystallite size of 24 nm. TEM and FESEM morphological
images confirm the spherical nature of ZrO2 NPs, and their distributions on surfaces show lower
agglomerations. ZrO2 NPs showed high optical absorbance in the UV region and a wide bandgap
indicating surface oxygen vacancies and charge carriers. The presence of Zr and O elements and their
O=Zr=O bonds was categorized using EDX and FTIR spectroscopy. The plant molecules’ interface,
bonding, binding energy, and their existence on the surface of ZrO2 NPs were established from XPS
analysis. The photocatalytic degradation of methylene blue using ZrO2 NPs was examined under
visible light irradiation. The 94% degradation of toxic MB dye was achieved within 20 min. The
antibacterial inhibition of ZrO2 NPs was tested against S. aureus and E. coli pathogens. Applications of
bio-synthesized ZrO2 NPs including organic substance removal, pathogenic inhibitor development,
catalysis, optical, and biomedical development were explored.

Keywords: ZrO2 NPs; green synthesis; photocatalysis; bacterial activity; Murraya koenigii

1. Introduction

Ecological contamination and climate modifications are promoting a major impact on
the world and demotivating the economy and healthy life for all [1–3]. The contamination of
water and its associated issues constitute one of the most serious problems facing humans
today. The issue of water contamination can be addressed by using different techniques.
Various methods are available to eradicate and remodify polluted water sources [4–7]. Nan-
otechnology is one of the more potent remediation technologies compared to other methods
because of the smaller size, which helps the particles to easily penetrate the polluted system
and react. Recently, metal oxide nanoparticles have been paid more attention in the fields
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of bio-activity, sensors, photocatalysis, electrocatalysis, adsorbents, etc. [8–12]. ZrO2 NPs
have excellent mechanical, optical, electrical, biocompatible, and catalytic stability, making
them suitable for a variety of catalytic, biomedical, and sensor applications. Three different
phases (cubic, monoclinic, and tetragonal) of ZrO2 NPs are obtained in the output of ZrO2
NPs. In addition, p-type ZrO2 NPs have exhibited a high bandgap, low phonon energy, high
adsorption in the UV region, reduction, and oxidation potential due to their acidic and basic
nature provoking hydroxyl and superoxide ions [13,14]. Numerous techniques exist for the
synthesis the ZrO2 NPs, such as coprecipitation, hydrothermal, laser ablation, photochemical,
sonochemical, and microwave-assisted routes. These techniques are produced by the multiple
phases of ZrO2 NPs. The electron trapping and oxygen vacancies on the surfaces of the ZrO2
NPs vary according to the crystal structure. The Green Chemistry Route has always em-
phasized sustainability and developed noxious-free synthesis techniques [15–22]. Moreover,
noxious-free synthesis reduces the negative impact on the environment. Plant-mediated syn-
thesis is gaining much attention due to its bio-molecule reduction, stabilization, and capping
activities [23–25]. Through the combination of green chemistry and nanotechnology, chemical-
free synthesis was introduced, and nucleation growth, size, shape, and charge transfer were
tuned. The reduction of metal ions and electron transfer from different bands are determined
from the bio-compounds [26]. The plant-extract-mediated nanoparticle synthesis method
accelerates bacterial inhibition due to microbial resistance, which reacts with the bacterial
system [27]. In the present work, three important aspects of the synthesized nanoparticles
are discussed: (i) The green chemical method of nanoparticle production, (ii) photocatalytic
dye degradation, and (iii) microbial inactivation. The Murraya koenigii plant leaves contain
various bio-chemicals, namely, inalool, elemol, geranyl acetate, myrcene, ocimene, terpinene,
and quercetin [28–30]. These are involved in the reactions of bio-capping, bio-chelating, bio-
reduction, bio-encapsulation, and bio-stabilization of nanoparticles. Dyes are very applicable
as major elements for color-related industries such as paint, textile, leather, and printing. The
release of dyestuffs comprising colors and highly stable non-degradable organic substances is
a major concern for the environment. Many dyes are used in these industries such as methyl
violet, methyl red, methylene blue (MB), congo red, and rhodamine B [31–35]. Among the
above-mentioned dyes, MB is regularly used in day-to-day life and in textile and various other
industries. Several methods are accessible for the removal of dye compounds from surfaces.
Photocatalysis is an easy and abundant technique to eradicate organic compounds with the
help of various light sources. A visible light source is a renewable energy source available
all over the world. Dye pollutants modify the origin of all water sources and disrupt the
ecological domains. The discharge of MB dye effluents creates mutagenic and carcinogenic
diseases. Bacterial limitations on the microorganisms induce a toxic effect on the environment
and produce contagious diseases on the surface [36–41]. E. coli and S. aureus bacterial strains
are very harmful food-borne and human-borne pathogens and initiate various infections at
intestinal and gastroenteritis sites. All over the world, these harmful bacterial strains increase
the death rate every year. Considering the harmful effects of the dye and two different
human-borne pathogens, bio-synthesized ZrO2 NPs were investigated in the removal of such
adverse effects on humanity.

2. Materials and Methods

ZrO2 NPs were formulated from analytical reagent (AR)-grade Zirconium nitrate (Zr(NO3)4,
99.9% purity) and Murraya koenigii plant extract. Methylene blue (C16H18ClN3S; 99.9% purity))
was obtained from HiMedia, India. The procured chemicals were used without any modifica-
tions. The reaction and solutions were created using double-distilled water.

3. Preparation of the Plant Extract

Green and fresh leaves of Murraya koenigii were bought from Bengaluru, Karnataka,
India, and cleaned with tap water. The washed leaves were soaked in double-distilled
water, and a mortar was used to crush the leaves. White cotton cloth was used to fil-
ter the dark green plant extract, and the obtained solution was dissolved in 100 mL of
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double-distilled (DD) water. The mixed leaf extract of Murraya koenigii was deposited for
future characterizations.

4. Biosynthesis of ZrO2 NPs

Biosynthesized ZrO2 NPs were formulated using a 0.1 M Zr(NO3)4 metal nitrate solu-
tion mixed with 10 mL of the Murraya koenigii plant extract using a magnetic stirrer (60 min).
The combination of metal nitrate and Murraya koenigii plant leaf extract dissolutions was
used to construct the ZrO2 NPs. The bio-extract of Murraya koenigii reacts with the metal
nitrate solution and emanates a milky white-colored solution. The white-colored solutions
deliver the nuclei formation of ZrO2 NPs’ atomic layers. The white-colored ZrO2 NPs were
processed by repeated centrifugation at 10,000 rpm for 15 min, and the obtained precipitate
was washed with double-distilled water. Finally, the collected white precipitate was dried
for 1 h at 100 degrees Celsius, and the white powder of ZrO2 NPs was collected and stored
for further evaluation.

5. Characterization Methods

The crystalline material and phase structure were analyzed by an X-ray diffractometer
(X-Pert Pro-Cu Kα radiation −1.5405 Å; 60 kV and 40 mA; 2θ limit of 20–80◦). The surface
functional groups of the ZrO2 NPs were captured using FTIR (Perkin Elmer λ = 4000 cm−1

to 400 cm−1). The optical defects and their analysis were captured using UV-DRS (Shimadzu
λ = 200 to 800 nm). The morphological beings and their existing surface elements were
derived from FE-SEM (FE-SEM, Ultra 55, Zeiss, Jena, Germany) with EDX (EDS, X-max,
Oxford Instruments, Wycombe, UK) analysis, and their surface inner objectives were
determined using TEM (Titan) analysis. The material binding and bonding between the
materials and bio-reductant were observed using X-ray photoelectron spectroscopy (XPS,
PHI 5000 Versa Probe III, Physical Electronics, Chanhassen, MN, USA).

6. Photocatalytic Dye Degradation

The visible-light-driven photocatalytic dye degradation efficiency of synthesized
nanoparticles was inspected by determining the methylene blue (MB) dye degradation.
Primarily, 10 mg of synthesized nanoparticles were well dispersed in a 10 ppm MB solu-
tion using the ultrasonication method. The ultrasonicated solution was placed in a dark
chamber for 30 min and stirred with the help of a magnetic stirrer. The absence of light
created an equilibrium condition. After that, the samples were irradiated by visible light.
The visible light source was a Xe lamp (λ = 400 nm), and the distance between the samples
was 8 cm. At periodic intervals, the irradiated samples were withdrawn and centrifuged
(1000 rpm) to eliminate the nanoparticles. Finally, the collected dye solutions were mea-
sured by a UV-Visible spectrophotometer. The dissociated MB dye concentrations were
observed at an absorbance of 665 nm. The active species of the photocatalyst was analyzed
using the quenching measurement, which can be used to determine the free radicals, holes,
and superoxides. The quenchers of quenchers (triethanolamine (TEOA), (p-benzoquinone
(BQ), and (isopropyl alcohol (IPA)) are used at a 1 mmol/L concentration to determine the
quencher analysis, and their readings were taken using UV-Visible spectroscopy [42].

The dye degradation efficiency against the nanoparticles was calculated by the
following formula:

MB dye degradation efficiency = ((C − Ct)/C) ∗ 100

where C is the initial dye concentration at zero time and Ct is the dye concentration at
periodic time intervals.

7. Antibacterial Activity

The antibacterial study of the synthesized nanoparticles against Staphylococcus aureus
(ATTC-6538) and Escherichia coli (ATTC-8739) were evaluated by the disc diffusion method.
The solidification process was carried out was nutrient agar, and sterilized Petri plates were
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filled with nutrient agar. The solidified plates were spread with a fresh bacterial culture.
The four different concentrations (10, 20, 50, and 100 µg) of synthesized nanoparticles were
loaded by 6 mm paper discs. The nanoparticle-loaded plates were incubated at 36 ◦C for
24 h. Finally, the incubated plates were produced in the inhibition zones. The observed
bacterial activities were compared by standard amikacin discs. The inhibited zone was
measured on the mm scale. The zone of inhibitions displays the effect of bacterial inactivity
of synthesized nanoparticles [41,42].

8. Reaction Mechanism of Zirconium Oxide Nanoparticles

Zirconium oxide nanoparticles were synthesized from Zr(NO3)4 using the leaf extract
of Murraya koenigii. The Murraya koenigii green leaves have shown remarkable biological
properties including antioxidant, antibacterial, antifungal, anti-inflammatory, and anti-
cancer activities [43]. Quercetin is one of the most important flavonoids in the leaf extract
of M. koenigii [44]. The reported findings [45] indicate that the presence of quercetin in
the leaf extract of M. koenigii might act as a reducing/stabilizing agent in the production
of gold nanoparticles. In the present work, the M. koenigii leaf extract of the quercetin
compound may donate an electron to zirconium ions (Zr4+) and reduce them to ZrO2 NPs.
The developed electrons from quercetin compounds form the interface between metal and
oxygen materials. The metal oxide nanoparticles using the M. koenigii formation mechanism
are presented in Scheme 1.
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Scheme 1. Possible mechanism for the synthesis of ZrO2 NPs using the M. koenigii leaf extract.

9. Result and Discussions
9.1. XRD Analysis

The X-ray diffractogram pattern of the biosynthesized ZrO2 NPs is presented in
Figure 1. The diffraction peaks at 2θ = 17.48◦, 24.17◦, 24.47◦, 28.12◦, 31.37◦, 34.13◦, 35.42◦,
38.58◦, 40.03◦, 44.77◦, 49.29◦, 49.99◦, 54.03◦, 17.48◦, 55.41◦, 60.02◦, 62.99◦, and 65.54◦ can be
assigned to the (001), (110), (001), (−111), (111), (200), (002), (120), (−112), (211), (220), (022),
(310), (131), (113), and (222) planes of the monoclinic structure of the ZrO2 NPs, which
aptly matches previously reported work and the standard JCPDS File No: 37-1484 [46,47].
There are no diffraction peaks of any other crystal phases observed in any of the samples,
indicating that they are all pure monoclinic ZrO2 NPs. The crystalline nature of the
nanoparticles is influenced by the size and particle expression over the material surface,
and they may be applicable in various applications. The Debye–Scherrer formula [48] was
used to calculate the crystallite size of the nanoparticles, which was found to be 24 nm.
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Phases without any other impurities and narrow crystallite sizes of ZrO2 NPs provided
better crystallinity and structural stability.
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9.2. FTIR Analysis

The biosynthesized ZrO2 NPs were analyzed with Fourier transform infrared spec-
troscopy (FTIR) and are shown in Figure 2. The OH-stretching on the outer surface of the
nanoparticles was represented by the presence of a peak at 3055 cm−1 [49,50]. The aromatic
amine and carbon-associated peaks were located at 1629 cm−1

, 1301 cm−1, and 1032 cm−1,
which indicates the bending vibrations of the C-H bond [50–53]. The carbon peaks arose
from plant bio-compounds. The bonding of O=Zr=O and the metal–oxygen interface was
confirmed in the synthesized ZrO2 NPs by the bands of 813 cm−1 and 734 cm−1 [53–55].
The obtained FTIR results of synthesized ZrO2 NPs delivered the reduction and lattice
oxygen stabilization process with the help of bio-derivatives.

9.3. UV-DRS Analysis

The UV-DRS absorbance spectrum and bandgap plot of biosynthesized ZrO2 NPs are
displayed in Figure 3. Figure 3a demonstrates the optical absorption of ZrO2 NPs at 260 nm.
These spectral activities determine the better photocatalytic degradation abilities over the
target organic substances. The formation of the ZrO2 nanostructure was evident from the
(Zr4+ and O2−) reduction and stabilization [56]. Kubelka–Munk relations are helpful to
determine the optical nature, and their values are presented in Figure 3b. The bandgap is
4.7 eV, which constitutes a wide bandgap and time-suspended e–h pair activity [57,58]. The
oxygen vacancy increased the charge carrier generation, which enhanced the dissociation
of pollutants from aquatic surfaces. The plant molecule interface between the metal sources
may form the metal-oxide nanostructures on the surface. Based on the UV-DRS results
of biosynthesized ZrO2 NPs, the nanoparticles’ bandgap determined the light absorption
enhancement and active site advancement on the catalyst surfaces, which provokes radical
activity and super oxide productions.
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9.4. FESEM with EDX Analysis

The shape and material compositions were detected using FESEM with EDX analysis.
Figure 4a,b depicts the spherical shape. Most of the particles attained a spherical shape,
while other particles obtained a combined spherical shape. Particles are found to be
eventually distributed over the surface. The spherical shape of nanoparticles caused the
enhanced degradation efficiency towards the noxious organic substances [59,60]. The
material composition of ZrO2 NPs is depicted in Figure 4c,d. Lattice oxygen was attracted
and combined by zirconium metals, which induces metal–oxygen bonding by using plant
molecules [61]. Oxygen (27%) attracted 69% zirconium to form the ZrO2 NPs. The lattice
oxygen with zirconium metal created the spherical shape, which can demotivate the
spreading of toxic compounds due to the existence of Zr4+ and O2−. The unassigned peaks
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are carbon materials, which are derived from plant bio-compounds and carbon tap. The
3.5% of carbon elements obtained was well established in the FTIR section.
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9.5. TEM Analysis

The surface morphological presence, particle distributions, and size of ZrO2 NPs were
determined using TEM analysis (Figure 5). The synthesized nanoparticles were distributed
consistently, and their size was found to be 27 nm. The plant bio-nutrients developed the
equally phased spherical nanoparticles on the surface, and their lattice arrangement over
the Zr and O atoms produced the poly-dispersity in biosynthesized ZrO2 NPs [62,63]. The
spherical shape is more unique than other shapes of nanoparticles because of their large
surface area and high penetrating ability in bacterial domains. Moreover, spherical-shaped
nanoparticles are highly appreciable in biomedical applications [64,65].

9.6. XPS Analysis

The chemical presence, composition, and valency of biosynthesized ZrO2 NPs were
determined using XPS analysis (Figure 6a–d). The wide spectrum comprises Zr-3d, O-1s,
and C-1s elements belonging to the biosynthesized ZrO2 NPs. The Zr spectrum emanates in
a 3d state, and their binding energies were 181.8 eV (Zr-3d5/2) and 184.2 eV (Zr-3d3/2). The
obtained Zr spectrum binding energies aptly matched previously reported work [66–68].
The Zr peaks denoted the metal’s existence, and there were no other metals involved in
the reaction. The exhibited oxygen spectrum displayed at 531 eV is in the O-1s state. Zr4+

and O2− formations and their interactions created the ZrO2 NPs [69]. The carbon peaks
were attributed to the plant extract, and their plant bio-chemicals were used to modify



Separations 2023, 10, 156 8 of 16

the valence-free metal and lattice oxygen stabilization with metal. The above-mentioned
actions were displayed at the binding energy of 233 eV to 238 eV and represent the C-C,
C-O, and C=O bonds, and their bonding was confirmed by FTIR analysis [70,71].
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10. Photocatalytic Dye Degradation

The photocatalytic activity of synthesized ZrO2 NPs was evaluated by estimating
the degradation of MB at 664 nm as shown in Figure 7. Under simulated visible light
irradiation, the absorption of the MB dye solution in the presence of the ZrO2 photocatalyst
decreases with increasing irradiation time. Visible light sources are abundant light, and
their absorption range is high and does not require high energy. Without nanoparticles, the
dye degradation is 8%, as the electron excitation in light irradiation is very low. The electron
migration on the surface reduced the dye bonding. During the excitation, in the presence of
nanoparticles, the active sites are very high compared to nanoparticle samples without light
irradiation [72,73]. In the photocatalysis reaction on the photocatalyst material, electrons
were excited to the conduction band from the valence band. Furthermore, the same number
of holes was created in the valence band. Then the conduction-band electrons and the
trapped electrons moved together to the surface of the photocatalyst and were trapped
by the oxygen vacancies present on the surface [74–77]. The oxygen vacancies trap the
O2 molecules and this led to the formation of superoxide radicals (O2

−•). Meanwhile,
the oxygen molecules present in the MB dye solution interacted with the surface oxygen
vacancies and further changed into superoxide radicals [78–82]. Similarly, holes were
trapped by water (H2O) molecules or OH− groups to create hydroxyl radicals (OH•−).
Finally, the generated radicals interact with the pollutant and effectively degrade the target
dye. The complete mechanism for the degradation of MB dye can be understood by the
following chemical reaction, which shows a graph of ln(Co/C) vs. time (min). The kinetic
study infers the order of the reaction. The graph depicts a straight line with a positive
slope and a rate constant of 0.06272 min−1 for ZrO2 NPs. The ZrO2 photocatalyst showed
94% degradation of MB after 20 min of the reaction. Figure 7d shows a graph of ln(Ct/Co)
vs. time (min). The kinetic study infers the order of the reaction. The mechanism of
photocatalysis is shown in Figure 7d and their equations are shown in (1)–(6).

ZrO2 + hν→ e−+ h+ (1)

O2 + e− → O2
−• (2)

h + OH− → OH• (3)

h + H2O→ H+ + OH•− (4)

O2−• + Methylene Blue→ Degradation products (5)

OH•− + Methylene Blue→ Degradation products (6)

There are many factors and reaction output conditions such as size, shape, reductions,
pH, temperature, and release of ions that determine the degradation performance of
nanomaterials. Different carbon source dopant materials provide better catalytic activity
against the indigo carmine dye [83]. The high surface area and narrow crystallite sizes of
the ZrO2 NPs exhibited enhanced degradation activities against the various dyes [84–88].
Scavenging radicals and superoxides are responsible for promoting the highest degradation
ability towards the organic dye compounds [85–88]. Visible light and UV light irradiations
induced charge production and electron trapping on the semiconductor nanoparticles’
surface. Visible light shows a very low production of radical scavengers compared to UV
light irradiation [85–91]. The quenching experiment is displayed in Figure 8. The ZrO2
catalyst degradation is 94%, and their degradation is compared with quenchers. The hole
degradation is higher than superoxides and hydroxides, which was measured using TEOA
(77%), BQ (49%), and TPA (26%). The radical scavengers influenced the rate of degradation
against the organic substances. Based on the above-mentioned table, the synthesized NPs
are found to be better photocatalysts of the wastewater process. The ZrO2 NPs were found
to be the best catalyst compared to the other listed materials in Table 1.
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Table 1. Photocatalytic dye degradation comparison table of ZrO2 NPs.

S.No Sample Dye Dye
Conc. Dosage Degradation Ref

1. Eu,C,N,S-doped ZrO2 Indigo Carmine 20 mg/L 100 mg 100% [83]
2. ZrO2 (MO), (MB), (CR), (MG) 10 mg/L 10 mg L−1 80%, 92%, 87% and 100% [84]
3. ZrO2 RY 96.8% [85]
4. ZrO2 MO 50 ppm 50 mg 99% [86]
5. ZrO2 MB 20 ppm 60 mg 97 [87]
6. ZrO2 AY 10 mg/L 0.1 g 84.04% [88]
7. ZrO2 MB and RB 1 mg/L 30 mg 99% and 90% [89]
8. ZrO2 MO 10 mg/L 100 mg 95% [90]
9. ZrO2 MO 10 mg 59.4 [91]
10. ZrO2 MB 10 ppm 10 mg 94 Present work

11. Antibacterial Activity

The NPs were examined using Staphylococcus aureus (gram-positive) and Escherichia coli
(gram-negative) through the disc diffusion method. The antibacterial zone of inhibition of
NPs is demonstrated in Figure 9. Plant-extract-associated ZrO2 NPs exhibited the highest
inhibition against various concentrations. S. aureus bacterial sensitivity of green-assisted
ZrO2 NPs is much higher than E. coli. The release of Zr4+ ions controls the bacterial spread
and growth of S. aureus and E.coli. The obtained bacterial inhibition values are enhanced by
the amikacin antibiotic disc. The reaction, admission, and interface of the nanoparticles to
the bacterial strains determine bacterial growth and death [92–95]. Cell wall membrane
leaks were attained from the release of Zr4+ ions. The plant extract combination on the ZrO2
NPs increased the radical production and improved the reactive oxygen species (ROS).
The admitted metal ions in the bacterial structure promote the electrostatic interaction and
lead to ROS production of ZrO2 NPs [96–101]. Moreover, the dissolution of metal ions and
lattice oxygens is derived from the deactivation state of DNA and protein molecules. DNA
and protein damage in the bacterial system cut off the food and communications systems,
which leads to cell death.
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12. Conclusions

Bio-extracts of Murraya koenigii leaf were used to achieve the formation of ZrO2
NPs. The monoclinic structure, spherical shape, and wide bandgap (4.7 eV) of ZrO2
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NPs demonstrated enhanced structural, optical, and crystalline properties. Bio-mediated
nanoparticle synthesis was proven to be a very esteemed production technique compared to
other methods. The plant extract played a very prominent role in nanoparticle production.
The Murraya koenigii leaf extract is attributed to many roles, including the bio-reduction,
stabilization, and bio-capping of ZrO2 NPs. The wide bandgap, lowest size, and spherical
morphology of ZrO2 NPs concluded the electron trapping and radical generations over the
surfaces. The synergetic interactions of Murraya koenigii and strontium source materials
produced bio-encapsulated ZrO2 NPs. The biosynthesized ZrO2 NPs were examined
against toxic dye pollutants and two different human-borne pathogens. The visible light
irradiation of ZrO2 NPs showed greater photocatalytic degradation of MB dye pollutants.
The bacterial deactivations of ZrO2 NPs exhibited better results against E.coli. The ROS
and radical generations of ZrO2 NPs exhibited better antimicrobial activity. The results
indicate that ZrO2 NPs are a possible candidate for the photocatalytic removal of toxic dye,
pathogenic deactivators, and wastewater treatment. Moreover, the green method of ZrO2
NPs production is found to be an alternative and effective method for the synthesis of NPs,
and it is a more affirming method than other available methods.
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